
Course Code: Title CSD110: INTRODUCTION TO PROGRAMMING

Program Number: Name 2095: COMPUTER PROGRAMMING

Department: COMPUTER STUDIES

Semesters/Terms: 21F

Course Description: The ability to solve arbitrary problems using a computer programming language is a valuable
skill for anyone. Accessible to all regardless of previous experience, the goal of this course is to
give students a sense of how to solve computing problems using the fundamental constructs in
all programming languages: values, types, operators, variables, lists, conditionals, loops,
functions, input & output. Students gain an understanding of how to break problems into sub
problems that can be solved using these fundamental constructs, and they learn how
computers can `understand` and execute the instructions they write in their programs.

This course is delivered using the Python programming language which is widely used in many
fields of work.

Total Credits: 4

Hours/Week: 4

Total Hours: 60

Prerequisites: There are no pre-requisites for this course.

Corequisites: There are no co-requisites for this course.

Vocational Learning
Outcomes (VLO's)
addressed in this course:

Please refer to program web page
for a complete listing of program
outcomes where applicable.

2095 - COMPUTER PROGRAMMING
VLO 2 Contribute to the diagnostics, troubleshooting, documenting and monitoring of

technical problems using appropriate methodologies and tools.
VLO 9 Support the analysis and definition of software system specifications based on

functional and non-functional requirements.
VLO 10 Contribute to the development, documentation, implementation, maintenance and

testing of software systems by using industry standard software development
methodologies based on defined specifications and existing
technologies/frameworks.

VLO 11 Apply one or more programming paradigms such as, object-oriented, structured or
functional programming, and design principles, as well as documented requirements,
to the software development process.

Essential Employability
Skills (EES) addressed in
this course:

EES 3 Execute mathematical operations accurately.
EES 4 Apply a systematic approach to solve problems.
EES 5 Use a variety of thinking skills to anticipate and solve problems.

Course Evaluation: Passing Grade: 50%, D

COURSE OUTLINE: CSD110 - INTRO TO PROGRAMMING
Prepared: Rodney Martin
Approved: Corey Meunier, Chair, Technology and Skilled Trades

In response to public health requirements pertaining to the COVID19 pandemic, course delivery and assessment traditionally delivered in-class, may occur
remotely either in whole or in part in the 2021-2022 academic year.

SAULT COLLEGE | 443 NORTHERN AVENUE | SAULT STE. MARIE, ON P6B 4J3, CANADA | 705-759-2554

CSD110 : INTRODUCTION TO PROGRAMMING Page 1

A minimum program GPA of 2.0 or higher where program specific standards exist is required
for graduation.

Other Course Evaluation &
Assessment Requirements:

To successfully pass this course, the student must receive passing grades for both the Test
portion of the class AND the Laboratory portion.

Grade
Definition Grade Point Equivalent
A+ 90 - 100% 4.00
A 80 - 89%
B 70 - 79% 3.00
C 60 - 69% 2.00
D 50 - 59% 1.00
F (Fail) 49% and below 0.00

CR (Credit) Credit for diploma requirements has been awarded.
S Satisfactory achievement in field /clinical placement or non-graded subject area.
U Unsatisfactory achievement in field/clinical placement or non-graded subject area.
X A temporary grade limited to situations with extenuating circumstances giving a student
additional time to complete the requirements for a course.
NR Grade not reported to Registrar`s office.
W Student has withdrawn from the course without academic penalty.

Books and Required
Resources:

Think Python: How to Think Like a Computer Scientist by Allen B. Downey
Publisher: Green Tea Press Edition: 2
ISBN: 978-1491939369
https://greenteapress.com/thinkpython2/html/index.html

Object Oriented Programming in Python
Publisher: readthedocs.org
https://python-textbok.readthedocs.io/en/stable/

Course Outcomes and
Learning Objectives:

Course Outcome 1 Learning Objectives for Course Outcome 1
1. Describe the nature of
computers and
programming

1.1 Define computation, and explain how it relates computers
and programming languages
1.2 Explain what a programming language is (and is not)
1.3 Distinguish between compiled and interpreted languages
1.4 Explain what is meant by a language`s syntax
1.5 Describe what happens in a computer when you run a
program
1.6 Describe the basic elements of all computer programs
1.7 Use a REPL to execute instructions and experiment with
ideas
1.8 Use a text editor and interpreter to create programs

Course Outcome 2 Learning Objectives for Course Outcome 2
2. Create variables and
simple expressions and
statements

2.1 Define the terms `value` and `type`
2.2 Determine the type of a value, and cast values from one
type to another
2.3 Create values of various types, including integers, floating
point numbers, and strings

In response to public health requirements pertaining to the COVID19 pandemic, course delivery and assessment traditionally delivered in-class, may occur
remotely either in whole or in part in the 2021-2022 academic year.

SAULT COLLEGE | 443 NORTHERN AVENUE | SAULT STE. MARIE, ON P6B 4J3, CANADA | 705-759-2554

CSD110 : INTRODUCTION TO PROGRAMMING Page 2

2.4 Explain the use of null values
2.5 Use values, operators and operands to create expressions
2.6 Explain operator precedence
2.7 Create useful code comments
2.8 Assign values to variables, and describe how this looks at
the level of computer memory
2.9 Describe variable naming conventions
2.10 Distinguish between expressions and statements

Course Outcome 3 Learning Objectives for Course Outcome 3
3. Use and create functions 3.1 Describe what a function is and why it is useful

3.2 Identify when to encapsulate instructions into a function
3.3 Create functions that may include parameters and/or yield
values
3.4 Call functions using arguments
3.5 Use function results as values in expressions that may
include function composition
3.6 Analyze flow of program execution when functions are
involved
3.7 Discuss variable scope
3.8 Create recursive functions, and understand when they are
useful
3.9 Define and use higher-order functions
3.10 Provide function documentation using conventional syntax
3.11 Explain function preconditions and postconditions
3.12 Employ the gather/spread operators to convert function
arguments to arrays and vice versa

Course Outcome 4 Learning Objectives for Course Outcome 4
4. Control program flow
using conditionals

4.1 Create boolean expressions using relational and logical
operators
4.2 Explain when and how non-boolean values may be
interpreted as boolean values
4.3 Use conditional statements to control program flow,
including chained and nested conditionals
4.4 Use conditional statements to check function preconditions
4.5 Describe the limitations of equality comparisons with
floating point numbers

Course Outcome 5 Learning Objectives for Course Outcome 5
5. Control program flow
using loops

5.1 Use loops to repeat a set of instructions a fixed number of
times
5.2 Use loops to repeat instructions depending on a dynamic
condition
5.3 Describe and use counter variables and sentinel values
5.4 Explain infinite loops and understand how to avoid them
5.5 Use return, break and continue statements to end loops
early

Course Outcome 6 Learning Objectives for Course Outcome 6
6. Use objects 6.1 Explain what an `object` is

6.2 Describe object methods and properties

In response to public health requirements pertaining to the COVID19 pandemic, course delivery and assessment traditionally delivered in-class, may occur
remotely either in whole or in part in the 2021-2022 academic year.

SAULT COLLEGE | 443 NORTHERN AVENUE | SAULT STE. MARIE, ON P6B 4J3, CANADA | 705-759-2554

CSD110 : INTRODUCTION TO PROGRAMMING Page 3

6.3 Use the methods and properties of objects in working code
6.4 Distinguish between mutable and immutable types
6.5 Explain what a reference is, and describe the underlying
model in terms of computer memory
6.6 Discuss the difference between object equality and object
identity
6.7 Distinguish between aliasing assignment and object cloning

Course Outcome 7 Learning Objectives for Course Outcome 7
7. Use sequences (lists,
tuples, strings) to store and
track information

7.1 Describe what a data structure is
7.2 Explain what a sequence is, and how it pertains to lists,
tuples, and strings
7.3 Obtain one element of a sequence using indexing
7.4 Obtain subsections of a sequence using slicing
7.5 Determine if an element is in a sequence
7.6 Remove an element from a sequence
7.7 Traverse sequences using loops
7.8 Create strings to represent textual data
7.9 Analyze list/tuple/string objects using common methods
7.10 Create and use nested lists and/or tuples and understand
when they are useful
7.11 Use destructuring assignment to obtain sequence element
values

Course Outcome 8 Learning Objectives for Course Outcome 8
8. Use dictionaries to store
and track information

8.1 Explain how dictionaries differ from sequences such as lists
8.2 Map a key to a value using a dictionary
8.3 Obtain a dictionary item using indexing
8.4 Determine if a dictionary key has already been set
8.5 Traverse dictionary data using loops
8.6 Analyze and manipulate dictionary objects using common
methods
8.7 Create and use dictionaries of lists/tuples
8.8 Describe common coding techniques using dictionaries,
such as histograms, reverse lookup tables, and memos.

Course Outcome 9 Learning Objectives for Course Outcome 9
9. Employ basic software
design techniques

9.1 Describe the purpose of modules
9.2 Reuse existing code by importing modules
9.3 Describe the terms `encapsulation` and `generalization`,
and how they pertain to functions and modules
9.4 Explain what is meant by a function or module`s interface
9.5 Use refactoring to improve existing code
9.6 Explain what an algorithm is and be able to implement
simple algorithms

Course Outcome 10 Learning Objectives for Course Outcome 10
10. Handle input/output, and
errors

10.1 Produce output using a print statement
10.2 Employ string formatting techniques
10.3 Obtain keyboard input from a user
10.4 Distinguish between absolute and relative file paths
10.5 Create paths to specific files

In response to public health requirements pertaining to the COVID19 pandemic, course delivery and assessment traditionally delivered in-class, may occur
remotely either in whole or in part in the 2021-2022 academic year.

SAULT COLLEGE | 443 NORTHERN AVENUE | SAULT STE. MARIE, ON P6B 4J3, CANADA | 705-759-2554

CSD110 : INTRODUCTION TO PROGRAMMING Page 4

10.6 Read data from a file
10.7 Write data to a file
10.8 Write simple command-line scripts that accept arguments
10.9 Distinguish between syntax, runtime, and semantic errors
10.10 Throw appropriate errors in exceptional situations
10.11 Prevent program crashes due to errors using try..catch
blocks
10.12 Use debugging tools to investigate errors

Evaluation Process and
Grading System:

Evaluation Type Evaluation Weight
Labs and Assignments 40%
Tests and Quizzes 60%

Date: July 30, 2021

Addendum: Please refer to the course outline addendum on the Learning Management System for further
information.

In response to public health requirements pertaining to the COVID19 pandemic, course delivery and assessment traditionally delivered in-class, may occur
remotely either in whole or in part in the 2021-2022 academic year.

SAULT COLLEGE | 443 NORTHERN AVENUE | SAULT STE. MARIE, ON P6B 4J3, CANADA | 705-759-2554

CSD110 : INTRODUCTION TO PROGRAMMING Page 5

